Introducing Systems Engineering Views in Product
Lifecycle Management

Frédéric Autran Dieter Scheithauer
CASSIDIAN CASSIDIAN
1 Boulevard Jean Moulin Rechliner Str.
78996 Elancourt - France 85077 Manching - Germany
frederic.autran@cassidian.com dieter.scheithauer@cassidian.com

Copyright © 2012 by EADSPublished and used by INCOSE with permission.
Permission granted to H-1-T-S Engineering to publish and use.

Abstract. Product Lifecycle Management demands to integrate all engineering data of a
product or service in order to provide full traceability of dependencies between information of
different types and from various sources. Current Product Data Management solutions set the
focus mainly on data representing physical items. Version Management applications
originating from software engineering environments are frequently used also for storing
systems engineering data. However, this data management landscape is not adequate for the
central role of systems engineering driving both, the development of physical system elements
and of system elements implemented by software.

This paper describes how all product data may be integrated with adequately emphasizing the
role of systems engineering. It is based on principles EADS is establishing for an EADS-wide
standardized but versatile approach appropriate for the wide range of products and services
offered by the EADS Divisions Airbus, Astrium, Cassidian and Eurocopter. Currently the
defined and agreed concepts are further progressed and implemented.

Introduction

In times with less sophisticated systems engineering methods, Product Lifecycle Management
(PLM) was mainly accomplished by configuring documents and generating
configuration baselines. The 1SO standard on configuration management 1ISO 10007 (ISO
2003) still allows this as a valid approach for configuration management.

In two domains handling information by just documents proved to be insufficient, and a more
detailed level of configuration control materialized. The drawing set for a product consists of
a number of individual drawings that are each configured separately at first. Similar
solutions arose for managing source code files that together represent a complete software
product.

From both origins the advance in information technology has led to powerful tools for
supporting Product Data Management (PDM) on one hand, or Software Version Management
(SVM) on the other. For more details on the evolution of tools see thelimpdé&menting

and Integrating Product Data Management and Software Configuration Management
(Crnkovic, Asklund and Persson Dahlgvist 2003). PDM tools cover structural, mechanical
and electrically engineering. They support assembly and in-service maintenance. SVM
tools concentrate on software, but are also used in a systems engineering context.

The configuration management capabilities of PDM and SVM tools evolved into different
directions. For example, PDM tools are targeted to master product variants. In software
engineering, concurrency of development activities demands branching and merging
capabilities applied to textual data. Consequently, SVM tools excel in this.

Of course, as more information is expressed ircgirad data formats, today further specific
data management tools exist like for requiremerdagaagement. Due to the narrow focus of
these tools they are disregarded here as theyth@sonfiguration management capabilities to
support PLM as a whole.

Another trend is the standardization of systemsnemging data representation for example
ISO 10303-AP233 (ISO 2010) or ReqlF (OMG 2011). Buth common data interchange
formats are still not applied on a large scale.réfuge no assumption was made regarding the
systems engineering data representation to be used.

PLM Integrating Development and Assembly:The fragmentation in PDM and SVM tools is
a burden for systems engineering to provide angrated overall PLM. For explanation,
Figure 1 shows schematically the complete prodwciuéion covering engineering and
assembly activities.

Engineering Assembly

ngineering Value Streams for Logical Syst. Elements

=

Design and Build
Standards

f Product \
Element
(G\gineering Value Streams for Structure, Mech., Elect.
N CIA
4 (PIN)
;{ ;)
00 P
\ (Froduct) o
Element
Engineering Value Streams for Equipment
— CiB
PNy B
X0
f Product \
Engineering Value Streams for Hardware Element
N > Product
A — cic (SIN 02)
(X) (PIN)
f Product \
Element
CID
(P/N)

Legend: [Process Task —>» Work Product Cl Configuration ltem P/N Part Number S/N Serial Number

Figure 1. Product Evolution

In engineering, coupled, but widely independentlgnaged value streams exist for the

development of

. logical system elements on the upper levels objis¢em architecture

. system elements dealing with structure, mechanicd ealectrics down to the
implementation level

. installed hardware like sensors, computers ancatmts!

. software elements implementing a major portiorhefaverall product functionality

In assembly, individual products are built takidbthe product elements needed from the
storage. The solution space defining valid prodwgtfigurations is defined by design and
build standards. The individual product elementsidentified by part numbers. Generally,
they are outcomes of the engineering value streanthe implementation level. In contrast,
the design and build standards are merely a re$tlte systems engineering value streams
dealing with the logical system elements, althotigils information may be provided by
drawing sets according to traditional practices.

From this overall view, classical PDM is mainly cemed with supporting assembly. It

controls the engineering value streams for strattunechanical and electrical development.
To some extent also engineering value streamsla@peent and hardware development may
be controlled by PDM as well. Software elementscaresidered to be delivered as completed
configuration items, but their engineering is mathgomewhere else. In a similar way, the
evolution of the design and build standards is altly controlled by PDM. It is assumed that

the systems engineering value streams work propedygr an external management scheme.

These practices limit the overall PLM capabilitadsclassical PDM since the importance of

systems engineering for the generation of desigh lanld standards is disregarded. For
enabling control of the complete product evolutiom unique context, systems and software
engineering environments need to be integratecciassical PDM applications for an efficient

PLM.

The Vision: Enable integrated Product Lifecycle Managementligbraduct data by proper
integration of systems engineering with ProductalManagement solutions.

To accomplish this vision, a particular working gpchas been established in the context of an
EADS-wide effort for PLM harmonization (Mondon 2Q0%his working group is staffed with
systems engineering specialists from all EADS dis in order to define a systems
engineering interface policy for EADS. The solutioombines a standardized approach
providing the flexibility to adequately support thrdde range of products and services
developed, manufactured and maintained by EADS.

This paper explains the principles and the propagmoroach to better integrate systems
engineering into PLM. On the basis of an abstracted on data management, an integration
concept is defined. The fundamental decision isaltow multiple systems engineering
environments to be integrated with a single Maftewsduct Definition application. The
objectives applicable to the Master Product Debnitare derived. It is explained how some
pitfalls associated with the chosen approach caavoeded. Finally, the standardized data
model for representing systems engineering infaonan the Master Product Definition is
described.

Application Architecture for Data Management

Traditionally, systems engineering tools are burglk user interface with a proprietary data
model. The integration of multiple systems engimggtools becomes a daunting task as the
number of possible tool interfaces increases fahgva quadratic function with the number of
tools. E.g., for integrating the n-th tool, n-1 @uohal interfaces need to be considered. To
segregate the application data processing frordateemanagement as shown in Figure 2 leads
to a more scalable solution. Each tool just comicates with the common data repository by
dedicated import/export interfaces. Data exchangadts like ISO 10303-AP233 (ISO 2010)
and ReqlF (OMG 2011) are principally supportiveléfine the interfaces.

The data management is further split up in tworay®ne is concerned with the evolution of
individual work products, e.g. the essential actdagenerated by the systems engineering
process. The other deals with the evolution ofesysteleases capturing all system elements up
to the overall product or service. The reasonshigrdifferentiation will become clear with the
following description of each layer and their asatbon with the systems engineering
environment domain and the Master Product Definidomain.

Systems Engineering Environment Domain

Analysis & Test o

Appli ion D Editing Tools Build Tools Representation
pg cation Data (MS Word, DOORS, (Compilers, 5 OE;%'STest Tools
rocessing Rhapsody etc.) Transformers etc.) (’ (Digital Mock-Ups,

Environments etc.)

Status Reports etc.)

Evolution of
Individual Work
Products

Data Repositories for Version Management

Evolution of
System
Releases

Master Product Definition Domain

Figure 2. Application Architecture for Data Management

Application Data Processing.The application data processing layer comprisesutber
interfaces and all the underlying processing fogrusteraction. Editing tools are used to
convert human thoughts into digital data. Buildisoaperate on digital data generating further
digital data like compilers or other transformasaito. Analysis and test tools are applied to
evaluate the quality. For this purpose, they precdseady existing digital data, and they
generate further digital data containing the evadmaresults. Of course, commercial systems
engineering tools may satisfy functionality of maéhan just one category. All three kinds of
mentioned tools alter data in the data managenepositories.

Compared to that, data representation tools acttesslata management repositories in
read-only mode. Data representation tools may eixttata from several data repositories to
seamlessly integrate them for browsing, navigatmm, configuration status accounting. They
are well suited to expose systems engineering trésuthe world outside the systems

engineering team as they do not need to includ@alintricacies of a user interface dedicated
to the editing and manipulation of systems engingettata.

Evolution of Individual Work Products. In this layer, the content of all work productsdan

optionally further supporting data are stored. Whlata formats are directly readable and
interpretable by humans, long-term storage andianghcan be ensured without bothering
about obsolescence of any application data pratg$sol.

For managing concurrency in systems engineeringnditing and merging capabilities are
important. Maximum control is achieved when twofeliént changes can be generated in
isolation followed by later merging both changeasaxutively into the main trunk. Usually,
SVM tools provide appropriate functionality to angaish this.

Evolution of System Release§ his data management layer hosts all the relabehseen all
the work products. This means that the work prodoatent of each configuration baseline is
defined. As far as systems engineering is conceraggregating the information up for all
system elements over the whole system architetdads ultimately to the design and build
standards.

At least per product or service, the evolution ygtem releases should be managed in one
repository only in order to maximize the efficienmfyPLM. Of course, it makes also sense to

strive for an enterprise-wide solution where theletion of the system releases of all products

and services offered by the enterprise are mandgahdardization and re-use of system

elements over the whole enterprise including proine management may then be managed
within a single application.

Systems Engineering Environment Domainin the following, we refer to the term systems
engineering environment in order to denominate tanys or tool suites used for performing
systems engineering. In its modest form, a systemggneering environment may consist of
one or more non-integrated application data pracg$sols. Information may be stored in tool
proprietary data formats.

At the other end of the spectrum, a fully integdagystems engineering tool suite with a
common data repository controlling the evolutiomairk products as well as the evolution of
product releases. However, as not all engineesisgstems engineering, it is not expected that
a systems engineering environment will handle eddpct data except in rather exceptional
cases. It is anticipated that a systems engineemgronment is optimized to serve the
systems engineering team in their developmentteffor

Master Product Definition Domain. The Master Product Definition is anticipated as the
unique environment holding all the information abtie evolution of system releases. It
maintains the information throughout the whole sgsarchitecture and covers all engineering
domains. Furthermore, it controls all the data le@nolver to manufacturing.

All authorized users of the Master Product Defamtare potential stakeholders for the systems
engineering information in its repository. This damds the availability of systems engineering
information that is valuable and meaningful to thider community. The systems engineering
information needs to be presented in a way undetatde and interpretable by the ordinary
user. Some complexity, non-avoidable in a systamgseering environment, but only relevant
for the systems engineering team should not besegim the Master Product Definition.

Integration of Multiple Systems Engineering Environments

Multiple Systems Engineering EnvironmentsWhen discussions on the systems engineering
integration into PLM started within the working gm it became evident immediately that we
would have to deal with multiple systems enginegmvironments. A vision for selecting
specific systems engineering tools and integrativeg deeply within the Master Product
Definition would be an illusion. Needs were to diveg for a number of reasons.

The expectations on systems engineering tools watty the system life cycle phase. For
example, during conceptual design the aim is t &in optimum solution for a given problem.
Main criteria comprise effective mission performarend affordability in the presence of
uncertainty and risks. In contrast, full consisteand completeness of the system definition is
the expected outcome of a definition phase. Systenggneering tools that support the
definition phase well may be a burden for the cphea design phase where completeness is
not the goal.

The wide range of products and services leaddfereint demands on the systems engineering
environment. For some projects, the definition mfagppropriate system architecture may be
the main challenge. For others, the system ardhit@enay be more or less pre-defined and
functional and performance fine-tuning are the miapics to work on.

Huge variations in the duration of system life egclare a further EADS-specific issue.
Especially in the aeronautic field, legal and regoiy obligations demand the capability to
maintain the fleet in airworthy conditions for thii in-service life. Experience gained by now
leaves little confidence that systems engineerugstwill be supported for so long by tool
vendors. On the other hand, migrating the systergseering data every time data formats or
tools are changing is no real option due to econahteasons. Thus, it is a fact that various
systems engineering environments for newly develgystems and legacy products have to
be supported concurrently.

It is recognized that in complex industrial orgaatians like an extended enterprise with

partner and multi-tier supplier organizations, PLlLi81the foundation of the cooperation

(Messadia, Eynard and Sahraoui 2011). But this doeprevent from facing variations of the

systems engineering environment. Due to high comge&and contractual constraints every

organization will seek for continuous improvemeintsheir processes to keep or to increase
their profits.

Integration Objectives. Figure 3 illustrates the interaction of the Mad®eoduct Definition
with various systems engineering environments. iRtegrating the systems engineering
information, the Master Product Definition providesSystems Engineering Interface (SEI)
Data Model. A consistent use of the SEI Data Maoselds to be ensured independently of the
original systems engineering environments by wihieghdata is generated. Five usage modes
provide guidance for filling up the data structusescording to the needs of a particular
program or project.

Systems Engineering Environments

Systems Systems
Engineering Engineering

Systems
Engineering

IFEE‘
In l d Project

Support Environment

Specific to
Division
Business Unit
Partner
Supplier
Programme

Life Cycle Phase
G G G G G G G T] G G G G
EADS Harmonised

SEI Data Model

SEI Policy [4 Vst
aster
-~ 7
SEI Data Model Product
. ata Mode ., oau
SEIU HARMDNIZATI(L),: Definition
. sage Modes . iZaTIoN

E AD>

Figure 3. Integration of Multiple Systems Engineering Environments

The Systems Engineering Interface is designedtisfg#he following objectives:

. To make systems engineering data available taittiibaized users of the Master Product
Definition Repository including
o those who have no access to the systems enginesgrurgnment, and
o those who do not need to cope with the intricackethe systems engineering

environment.

. To establish relations of systems engineering déta other data stored in the Master
Product Definition Repository in order to providglabal view.

. To provide efficient and comfortable audit trailgeo all product data stored in the
Master Product Definition Repository including &yss engineering data for future
investigations.

. To enable an enterprise-wide archiving solution ®&ystems engineering data
independently from a particular systems engineegimgronment.

. To allow shutting down the original systems engimgeenvironment used for design
after system development has been completed insbéachaintaining it for the
development of potential future updates.

. To facilitate the import and export of systems aeegring data between the Master
Product Definition Repository and various currend &uture systems engineering
environments on the basis of a common data model.

Avoiding Synchronization Pitfalls. The chosen architecture to integrate multiple syste
engineering environments leads to a duplicatiomlath stored in the systems engineering
environment repository and the Master Product Dx&fim Repository. Some rules need to be
established in order to avoid inconsistencies withisingle repository and between both
repositories.

The first rule is to control the application datagessing for certain data in one environment
only. In a very sophisticated environment this vdoglearly be the systems engineering
environment for all systems engineering data. Undere realistic conditions, the systems
engineering environment may lack some functionaptpvided by the Master Product
Definition. Thus, some systems engineering datalmeagenerated or further processed by the
Master Product Definition.

The second rule is to export only mature systemgineering data from the systems
engineering environment to the Master Product D&im In this instance mature means two
things. The quality of the data has been evaluaged, the data may be used as a point of
reference for the work of other users of the Ma&syduct Definition. This rule avoids
inconsistent states of immature data linked torodhigects in the Master Product Definition.

The third rule is closely coupled with the secoimdorder to enhance concurrent engineering
capabilities export cycles of systems engineeriatp dshould be short. For the systems
engineering activities, this means that procesaluéifles for managing iterations performed
concurrently are available and are applied.

The fourth and final rule forbids the export of teyas engineering data for which editing is
controlled by the Master Product Definition to ateyns engineering environment. Otherwise,
inconsistent links could be created when systergsenrring information is exported back to
the Master Product Definition Repository. The imf@tion within the Master Product
Definition may have further evolved meanwhile. Hoee there is one exception to this rule:
A systems engineering environment repository maynlialized with data from the Master
Product Definition Repository before commencing elegment activities in the particular
systems engineering environment.

The Systems Engineering Interface Data Model

It is the main purpose of the SEI Data Model tolbsystems engineering information for
the benefit of all authorized users of the MastedBct Definition. As a consequence, systems
engineering data may be linked to other data stamedhe Master Product Definition
Repository for achieving overall PLM. Although tB&l Data Model is intended to initialize
systems engineering environments, it does not geodedicated data structures for all specific
features of particular systems engineering toalg, @ presentation attributes and storage
schemes.

Usage Modes and Their DependencieNot all systems engineering efforts will populdte t
complete SEI Data Model with data depending onpiagicular needs. However, in order to
ensure a consistent view within the Master Prodefinition, usage modes are defined to
provide guidance for which purposes and under wbaiditions the sub-sets of the SEI Data
Model shall be used. Figure 4 shows the five usagées and indicates their dependencies.

)

Elementary
Defining

Mode 5: Engineering Value Stream Mapping

: ; Architecture

[Mode 2: System Product Structure Management]

—

\

[Mode 1: Controlling Configuration Baselines, Work Products and Supporting Data
J

Figure 4. Usage Modes

Usage Mode 1,Controlling Configuration Baselines, Work Produetsd Supporting Data
satisfies basic configuration management needscdanpliance with legal and regulatory
obligations. Its application is mandatory. All othesage modes are built on top of Usage
Mode 1.

Usage Modes 2 to 4 are providing the architectulahctional, and requirement views
essential for requirements engineering and systesigd. Usage Mode 2SYystem Product
Structure Managemehtis of use whenever several system elementsearelaped by loosely
coupled, but widely independently managed valueastis. It enables the control of any
concurrent engineering practices between thoseevstitams. Usage Mode Fuhctional
Breakdown Recordinigis not intended to create a separate produattsire in parallel to the
system product structure. Instead it maps the re$uhe functional analysis for the related
system element. Usage Mode 3 becomes increasimadlybie, if Usage Mode 4 is applied
also. Usage Mode 4Requirements Managemgnadds the representation of requirements
and traceability as individual entities to the $kta Model. Thus, detailed impact analysis
over the whole system product structure and othtx kihked to it is enabled for requirements.
In conjunction with Usage Mode 3, it becomes visilathich requirements are relevant for
which function and sub-function.

Usage Mode 5,Engineering Value Stream Mapplhdgs only dependent from Usage Mode 1.
Its purpose is to control the evolution of a systelament when iterative development
practices are applied.

Systems Engineering Interface Data Model Class Diagm. Figure 5 shows a class diagram
depicting the SEI Data Model. In the following thigject classes and their purpose are briefly
described. The object classes are assigned tdispesage modes as shown by different colors
used for each usage mode.

Usage Mode 1
System Structure = Product Struture
Usage Mode 2 o 2
Invariant Node = Invariant Node =]
Usage Mode 3 g 2
£ 8
Usage Mode 4 T e § = = g
Usage Mode 5 S|l s 01| ol 2 Sl g
c & S ©
[nonser | 8 5 2
o o
System Block
Variable Configuration Node
5
5
§ 2 : 1
= @ g
= .
% 3 = hasffor product solution
= o =
N «| 3 *
1.*
System Block Technical Solution implements * Product Technical Solution
*
-~ - - - - -
described by
>
o
. . o
is defined by System Configuration * [2
* . =
c Baseline &
K=] @
8 @ ©
5 s
@ supported by 3 [XOR| *
=
XOR
----- *
" * supports 1
- u
Supporting Data il Work Product -
comprises
0.1
¥ ¥
Y | e 0.1 I
H o
i ial 2
precedes @ precedes]
[}) o
results results EIR R
3| 3|8
allocated to 0.* 1 £l 3]3S
c| £
* I/—*—
. 1
Functional Traceability Matrix traces from Requirement Set
Specification
— —
| o traces to /I\ H
[l
[1%
=1 traces from £
5 =1
= €
Traceability Matrix object has exactly 8
ne "traces from" and one "traces to" link.
c o o
_§ Trace Requirement *
e traces from
X
[1 Part
Qo * * -
*
traces to
-~
traces to traces from
hen a Requirements is traced to a Function, the containing race links objects belonging to objects linked by Trace object has exactly
espective Requiremenset and Functional Specification a he corresponding Traceability Matrix ne "traces from" and one "traces to" link.
e included in Work Products describing the same Technical Solution

Figure 5. SEI Data Model

Usage Mode 1: Controlling Configuration BaselinesWork Products and Supporting
Data. Three object classes are associated with Usage Modystem Configuration
Baselines, Work Product and Supporting Data.

Work Products contain the engineering value geadrdthey have to be kept up-to-date and
are designated for being referenced by System Qunaiion Baselines. Examples for Work
Products include all artifacts assumed by ISO-1008D 2003) as product configuration
information like specifications, design documeats., plus the assurance results like test
reports and safety assessment results. The caft¥vivrk Products may be stored in various
files with different formats ranging from readaliecuments to tool proprietary data formats.
All artifacts that are not Work Products are caledpporting Data. They are of a more
temporary nature and are valid only in the contdxhe Work Products they are contributing
to. Examples for Supporting Data include all chaogetrol records, trade-off studies, review
comments and responses, and communication recikeldefters, meeting minutes, and
e-mails. While Work Products tell what the systesnSupporting Data provide all the hints
why a system has evolved to its current state. gksaf this is helpful to analyze later
improvement suggestions, problems or accidentsp@&@tipg Data should be kept. The
distinction of these two categories of informatias first proposed in an earlier paper
(Scheithauer and Schindler 2000) for two reasanpraving the efficiency of managing life
cycle data, and enabling the definition of engimegvalue streams (Scheithauer 2012).

System Configuration Baselines may fulfill a numbgpurposes in order to serve as a point of
reference comprising a consistent set of severak\Wooducts. Thus, they may support any
management review for investment decisions or $sessing, if objectives of an investment
have been achieved. On a lower technical scalee®ysionfiguration Baselines may for
example be defined to control the test readinessdifidual test procedures. Considering all
the information stored in the Master Product Déifami Repository, System Configuration
Baselines may furthermore be utilized for contirglgumonitoring their evolution and the
identification of the delta for achieving an assted quality gate.

Usage Mode 2: System Product Structure Managementhe System Product Structure
captures a system's architecture. The overall systed every system element on any
architectural level are represented by two objéasses: System Block, and System Block
Technical Solution. The System Block is generatgthb systems engineering team in charge
of the upper level system. It stands for the rezqugnts allocated to the system element. On the
basis of the allocated requirements, the SysterokBlechnical Solution is defined in terms of
system requirements, system functions and thetaotural breakdown to the system elements
on the next lower level. When a System Block Techinbolution represents an item in the 3D
world, it needs to be linked to the correspondingdBct Technical Solution that exists outside
the SEI Data Model.

As described, each system element is representbe IBEI Data Model by two objects. This
enables variant management and re-use. A Systeok Blay refer to more than one System
Block Technical Solution.

A further object class, Invariant Node, may be usechap a pre-defined product structure.
Such a system product structure may result fronorecept phase. In the concept phase, a
high-level system architecture may be defined withemy detailed work commenced on the
individual system elements. Another purpose mathbenapping of system breakdown codes
of a standardized system breakdown. This is compranatice in aviation for maintenance
purposes, for example ATA Specification 100 (ATA02Y.

Usage Mode 3: Functional Breakdown RecordingThe central object class of Usage
Mode 3 is called System Function. It representsmation or sub-function. The trees of nested
functions and sub-functions are intended to retoedunctional decomposition performed for
a particular system element. The functional decaitipm may go much deeper than the
decomposition into system elements on the nextitacthral level in order to generate

appropriate understanding and the evidence for rdesonability of the architectural

decomposition.

A set of top level functions is assembled as a fomal Specification object. A Functional
Specification is designated to be included in a KVBroduct. In conjunction with Usage
Mode 4, traces to requirements and parts may lablested.

Usage Mode 4: Requirements ManagementUsage Mode 4 is dedicated to detailed
requirements management information. Individual iR@ments may be bundled to
Requirement Sets that are then linked to otherctdjmamely Work Products, or in case of
allocated requirements, to a System Block. Tradigaliiformation may either be contained in
Traceability Matrices or may be expressed as exptaations between requirements.
Requirement Sets and Traceability Matrices areelinto those Work Products that represent
their content. Furthermore, individual requirementsy be linked to Parts that exist outside the
SEI Data Model.

Usage Mode 4 offers the foundations for performiAgpduct Lifecycle Requirement
Management (Carlsson and Strandberg 2009). In notiqun with Usage Mode 3, the relations
between System Functions and Requirements sugpogédneration of functional based test
cases with coincidently creating the evidence farequirements based demonstration of
compliance. In conjunction with Usage Mode 2, tbkation between a system block and its
allocated requirements allows to reflect the casocafdrequirements and the link with the
design activity, providing a way to manage the fTeegring sandwich"”, composed of
subsequent layers of models and requirements @idkChard 2004).

Usage Mode 5: Engineering Value Stream Mappind-he single object class associated with
Usage Mode 5 is named Process Task. It repredenisrdcess task level of the hierarchical
process model introduced by an earlier paper (8wneer and Schindler 2000). Process Tasks
connect all Work Products with trigger/result linksbuild up the work product generation
sequence. To some extent also Supporting Data machuded in a work product generation
sequence (Scheithauer 2012). Especially, configurabntrol records may be used to express
the front loading of the value stream.

A Process Task generally stands for the activigem$ormed in order to generate a particular
version of a Work Product. The supports relatioriwken the Process Task and the
contributing Supporting Data defines the validiontext of the Supporting Data.

Conclusion

The considerations presented in this paper leadstestainable as well as versatile solution for
integrating systems engineering into an overaldBeo Lifecycle Management solution. The
main benefits of the proposed approach lie in treas.

At first, the Master Product Definition holds dilet systems engineering information to fulfill

the stated objectives. All systems engineering dath the links to other product data are
traceable using standard features of the MasteduetdDefinition. No additional tools are

required in principal. However, powerful data reggnetation applications will usually serve
comprehensive read-only views supporting the imetgtion of the data stored in the Master
Product Definition repository.

At second, the data model of the systems engingearierface sets a sustainable standard for
representing the systems engineering informattoa.comparably simple. Authorized users of
the Master Product Definition that are not systemgineering specialists have not to bother
with the intricacies of a systems engineering autigoenvironment.

At third, flexibility is gained by a modular condeip two directions. Usage modes are to be
selected according to actual program rules or ptapeeds with an impact on the actual
capabilities for information tracing in the Mastroduct Definition. In the other direction, a

further evolution of systems engineering methodsl @orresponding suitable systems
engineering environments is not constrained. Chatmthe systems engineering environment
have no impact on the data model of the systemmeagng interface or the stored systems
engineering data in the Master Product Definition.

At fourth, the modular concept allows also the d¢siexce of several systems engineering
environments connected to a single Master Prodetih@ion. Legacy programs may stick to
their traditional systems engineering environmeviide emerging programs may select a high
sophisticated systems engineering environment agplgading edge methods and tools. In
the context of complex organizational set-ups dikeipply chain, some degrees of freedom are
gained for all the systems engineering teams iexéended enterprise. When traceability over
the whole system architecture is maintained bynglsiMaster Product Definition, suppliers
may be allowed to rely on their in-house systemgirezering capabilities and systems
engineering environment.

Despite all the listed benefits, it finally sholdd noted that the approach presented does not
define a terminal state for the inclusion of systeengineering into Product Lifecycle
Management. It is rather the starting point fotHar integration of the classical product data
management domain into an overall consistent aficezft systems engineering process.

References

ATA (Air Transport Association of America) 1998TA Specification 100 - Specification for
Manufacturers' Technical Data.

Carlsson U., Strandberg T. 2009. "Product LifecyRéguirement Management (PLRM) — a
through life information management challenge.” étapresented at the annual PDT
Europe conference, Versailles, France, 18-19 Noeemb

Crnkovic I., Asklund U., Persson Dahlgvist A. 2003plementing and integrating product
data management and software configuration managerirwood, MA (US) Artech
House.

Dick J., Chard D. 2004. "The Systems Engineeringd®ach: Combining requirements,
models and design." White paper, Telelogic.

ISO (International Organisation for Standardisgti@903. ISO 10007 Guidelines for
configuration management.

2010. 1SO 10303-233Automation systems and integration Product data
representation and exchange — Application Prot@38 - Systems engineering.

Messadia M., Eynard B., Sahraoui A.E.K 2011. "PLM atool for supporting industry
collaboration.” Report N° 11339, LAAS Toulouse, ga.

Mondon, J.Y. 2009. "PHENIX - The EADS ProgrammePR&M Processes, Methods & Tools
Harmonization." Paper presented at the annual PD®de conference, Versalilles, France,
18-19 November.

OMG (Object Management Group) 20ReqlF - Requirements Interchange Format.

Scheithauer D., Schindler A. 2000. "A StandardmatiConcept for Non-Standard
Development Projects.”" Paper presented at the EuQBD, Munich, Germany,
September 13th — 15th.

Scheithauer, D. 2012. "Managing Concurrency in &yst Engineering." Paper presented at
the 22nd INCOSE International Symposium, Rome (8F)2 July.

Biography

Frédéric Autran is Systems Engineering Senior Expert in Cassi@arEADS company). He
has an engineer degree from Ecole Centrale de @&84). After 5 years in development of
CASE tools, he acted for 8 years as a consultanthi® French Ministry of Defense and
contributed to the building of the semantic intenagbility framework for the various French
Army C3I systems. He then joined EADS in 1997 tiougethe management of interoperability
among systems composing the new command and cegstaim for the French Air Force, and
introduced the System Engineering principles of AEB\632 in this programme. Since
2000, he is involved in the deployment of systemgireeering in EADS, from process
definition to project coaching. In the frame of tAeM Harmonization Center, he currently
leads the “PLM4SE” group harmonization projectg ttefines the interface between Systems
Engineering activities and the Master Product D&din. In 2005, he created and chaired until
beginning of 2009 the System of Systems and Comlstems working group of AFIS
(French chapter of INCOSE). He is INCOSE Certiftygtems Engineering Professional since
August 2009.

Dieter Scheithauerstudied electrical engineering with special emhas automatic control
at the Universitat der Bundeswehr Minchen resulim¢he degree of a Diplom-Ingenieur
univ. in 1980 and a doctor's degree (Dr.-Ing.) 987 His service as technical officer in the
German Air Force ended in 1988. Over his profesdioareer he contributed in various roles
to the flight control system development for mafmuropean military aircraft and helicopter
programs. He acted as project manager for the deweint of unconventional airborne and
ground-based systems. In 1999 he joined the Eumopeaonautic Defence and Space
Company. Since then he has mainly worked in the &éprocess engineering. Today he holds
a position as Senior Expert Systems Engineeringd3ses within Cassidian.

He is a former president and a honorable memb&fSE — The German Chapter of INCOSE.
He represents Cassidian on the INCOSE CorporatéséigvBoard. And, he is an INCOSE
Expert Systems Engineering Professional.

